

HDSPR

HARDY Self-Pierce Riveting System

HDSPR Self-Pierce Riveting System

Technical parameters

Rivet specifications applicable	Ø=3.3 / 5. 5 mm Optional Ø= 4.0 / 5. 3 / 6.5 mm		
Material strength	<1600 Mpa		
Sandwich of workpiece sheets	2 - 4		
Setting force	up to 85kN		
Riveting accuracy	1kN		
Riveting speed	≤ 250 mm/s		
Speed adjustment accuracy	1mm/s		
Displacement control accuracy	0.01mm		
Drive system	Servo motor		
Power supply	380V/50HZ		
Standard lap size	Ø=3.3 / 4.0 mm 16 mm		
Standard Iap Size	Ø=5.3 / 5.5 / 6.5 mm 18 mm		
Depth	150mm-1200 mm		
Maximum opening size	60-250 mm		
Communication protocols	EtherNet/IP, ProfiNet, DeviceNet, CC-Link etc		
Fastener feeding method	Manual, Vibration Bowl, Tape feeding, Magazine - feeding		

Actuating unit

Die

- High lifespan, durability
- High adaptability
 (matches rivet and sheet thickness.)
- High-Precision positioning

C-frame

- Standardized, modular, lightweight design
- High-precision manufacturing ensures assembly quality
- The maximum depth of 1200mm is suitable for almost all applications
- Infinite-life design

Coaxial deviation	<0.1 mm	
Angular deviation	<0.3°	
Weight	< 50 Kg	
Stress	< 300 mpa	

Process Introduction

Process report

Mechanical Analysis Report

D	Ctdd	\/-l	Dle
Parameters	Standard	Value	Result
Left interlock	≥0.4mm	0.59	Pass
Right interlock	≥0.15mm	0.48	Pass
Head height	-0.5mm+0.3mm	0.17	Pass
Outer diameter	≥0.2mm	1.55	Pass

Cross-Section analysis report

Introduction and Testing Standards for Metallographic Testing

Parameter	Category	Request	Remark
Elongation requirements	Stamped aluminum	Elongation requirement: ≥12%.	
	Extruded aluminum	Elongation requirement ≥9%.	
	Cas t aluminum	Elongation requirement >5%.	
Thickness requirements	φ3 rivets	1.5mm ≤ Total thickness <5mm	Generally, it is only used for two layers's heets or non-structural parts
	φ5 rivets	2.0mm ≤ Total thickness ≤9mm	2 ~ 4 floors
Upper layer requirements	strength	Limit specification of high-s trength siteel: 1000MPa, max thickness: 2.0mm; 1500MPa, max thickness: 1.5mm; 2000MPa, max thickness: 1.0mm	Combined with the results of the experiment
Lower layer requirements		Riveting of two-layers heets, the thickness of bottoms heet s hould be greater than 40% of the total thickness	
	thickness	Riveting of three-layers heets, the thickness of bottom sheet should be not less than 30% of total thickness	
		The thickness of bottom sheet is not less than 0.8mm (3mm rivets) and not less than 1mm (5mm rivets)	
	strength	The strength of the bottom sheet ≤ 600Mpa	

2. When as taluminum is used as the uppersheet, the thickness can change by 0.1mm; And is allowed to change by 0.3mm When as taluminum. aluminum is used as the bottom sheet.

Independent control system

- Standardize "embedded PC" control
- The standard HMI for parameter setting, data curve viewing, and Error alarm reminde
- Simple and intuitive interface, password protected access levels
- The riveting process is automatically monitored to ensure the quality of riveting
- Data acquisition allows important data to be uploaded to the factory MES to ensure product quality
- Multiple communication protocols such as EtherNet/ IP, ProfiNet, equipmentNet,CC-Link etc.

HARDYAuto Fastener Feeding System

Features:

- A variety of feeding methods are available: vibrating plate blowing, belt conveying
- · Simplified design, greatly improve the stability of feeding
- Fastener feeding time <1S, to meet the CT requirements of all assembly industries
- The channel is independently customized to fully meet the adaptability of the fasteners
- Modular components for easy maintenance.

HARDY Self-Pierce Riveting System, Optional types for fastener feeding mechanism system:

- 1. Automatic feeding
- 2. Magazine feeding
- 3. Tape feeding
- 4. Manual feeding
- 5. Handheld portable rivet setting tool HTF

Feed hose

- Multiple specifications
- Remote **Transmission**

Software

Main interface:

- Functional, concise and straightforward
- · Alert of the status of each posture during device operation
- Real-time feedback on the operation of the device
- It can be operated by touch or keyboard and mouse

Data Acquisition and Analysis:

· Process data acquisition and graphical analysis

Maintenance:

 Preset maintenance prompts and record usage data

C- Frame

C- Frame

- Each C-Frame undergoes CAE simulation to ensure uniform force distribution
- The lifespan of the C-frame can reach at
- least 10 million cycles, and the shape can be customized according to the customer's product shape and fixture

